Singular Radon Transforms and Maximal Functions under Convexity Assumptions

نویسنده

  • Andreas Seeger
چکیده

We prove variable coefficient analogues of results in [5] on Hilbert transforms and maximal functions along convex curves in the plane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Radon Transforms and Applications to Ergodic Theory

We prove L boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and L ergodic theorems for certain families of non-commuting operators.

متن کامل

Sparse Bounds for a Prototypical Singular Radon Transform

We use a variant of the technique in [Lac17a] to give sparse L(log(L)) bounds for a class of model singular and maximal Radon transforms.

متن کامل

Discrete Analogues of Singular Radon Transforms

The purpose of this paper is to describe recent results we have obtained in finding discrete analogues of the theory of singular integrals on curves, or more generally of "singular Radon transforms," at least in the translation-invariant case. Our theorems are related to estimates for certain exponential sums that arise in number theory; they are also connected with Bourgain's recent maximal er...

متن کامل

ar X iv : m at h / 02 05 15 6 v 1 [ m at h . C A ] 1 4 M ay 2 00 2 SINGULAR MAXIMAL FUNCTIONS AND RADON TRANSFORMS NEAR L

We show that some singular maximal functions and singular Radon transforms satisfy a weak type L log logL inequality. Examples include the maximal function and Hilbert transform associated to averages along a parabola. The weak type inequality yields pointwise convergence results for functions which are locally in L log logL. 1.Introduction Let Σ be a compact smooth hypersurface of R, and let μ...

متن کامل

A Method for Proving L-boundedness of Singular Radon Transforms in Codimension 1

Singular Radon transforms are a type of operator combining characteristics of both singular integrals and Radon transforms. They are important in a number of settings in mathematics. In a theorem of M. Christ, A. Nagel, E. Stein, and S. Wainger [3], L boundedness of singular Radon transforms for 1 < p < ∞ is proven under a general finite-type condition using the method of lifting to nilpotent L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002